If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-2X-182=0
a = 1; b = -2; c = -182;
Δ = b2-4ac
Δ = -22-4·1·(-182)
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{183}}{2*1}=\frac{2-2\sqrt{183}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{183}}{2*1}=\frac{2+2\sqrt{183}}{2} $
| 4^x^2-21=16^2x | | 100^6x-7=10x^2+10x-62 | | 129=(n-2)*180/n | | 1=1.5*x | | 3w+45=50 | | X-6-9x=10x+3 | | X-6+9x=10x-6 | | 34=1.06x | | 5x=144-7x | | X-6-9x=10x-6 | | 0.10=0.50f | | 7w-8=97 | | 25+8=x/50=5 | | 75-2x=20 | | 2x-75=20 | | 5/2x-3=3/2 | | 6-x=(5+x)-4 | | 2/3x+1/2x=3/4 | | 49=17+3x | | 3/2x+1/2x=3/4 | | 3(4-2w)=5 | | 62+x=40/100 | | 16+3y-y2=2 | | 3x−15+5x−23=90 | | 71=x^2+5x+5 | | 49=17+3y | | d+6/7=22 | | (2x^2)+4x^2=42 | | 4x²=100=0 | | |7x-6|=|5x+9| | | |7x-6=5x+9| | | 5^2x-3=19 |